July 2016 Workshop DC & Servo Motors

Rusty Cain 7/27/2016

While you are waiting for the Workshop to begin...

- 1. Make sure you are connected to the local Wifi Guest Password: Welcome2DMS
- 2. Make sure you have Arduino IDE installed and working:

Download: Arduino Version 1.6.5 or newer.

3. Download Projects: <u>www.the-cains-group.net</u> Use link:

July 2016 Workshop Servo & DC Motors

Project1 - Project2 - Project3 etc...

Parts Needed: (Ask about Parts kits)

- 1- Arduino Uno, Breadboard & Wires,
- 2 SeeedStudio Motor Shield V1 or V2
- 3 Motor Pack for Arduino

	Please sign in		
Name	Member Y/N	Email address	

Build the Project 1 L293NE or SN754410 Quad Half-H Driver

Get parts list from the web page <u>www.the-cains-group.net</u>

Select: July 2016 Workshop Servo & DC Motors

Select: Part_lists.txt for a list of the parts.

Follow schematic drawing and build on your breadboard.

Download: Project_1_HBridge_SN754410.ino

Upload to Arduino Board

L293NE or SN754410 Quadruple Half-H Driver

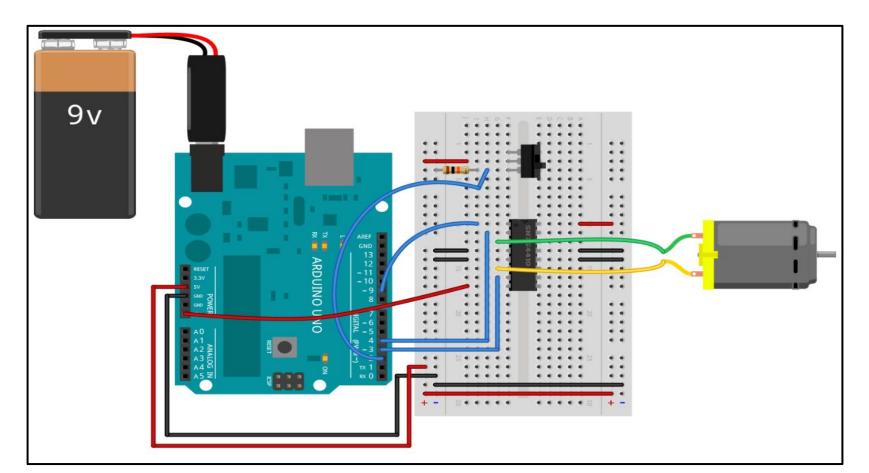
The L293NE/SN754410 is a very basic H-bridge.

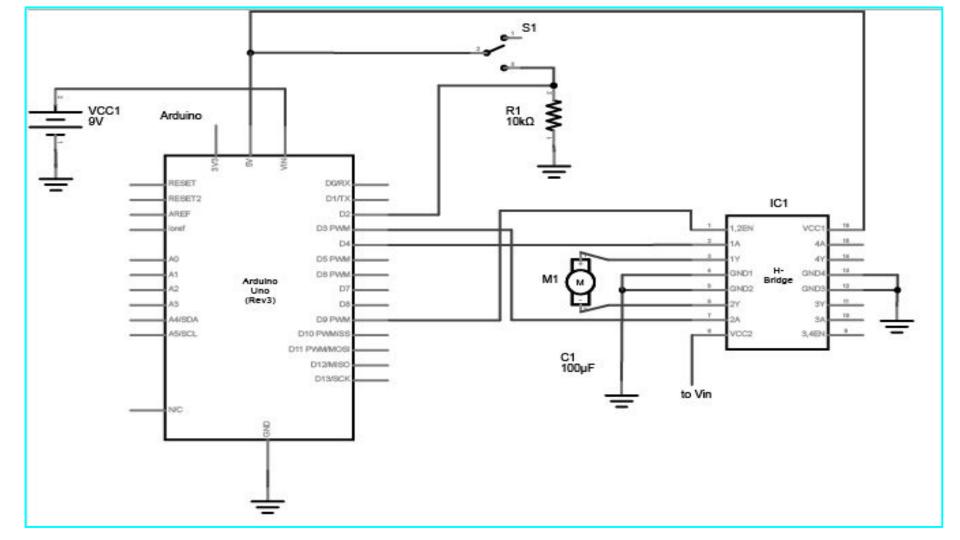
It has two bridges, one on the left side of the chip and one on the right, and can control 2 motors. It can drive up to 1 amp of current, and operate between 4.5V and 36V.

EN	1A	2A	FUNCTION
н	L	н	Turn right
н	н	L	Turn left
н	L	L	Fast motor stop
н	н	н	Fast motor stop
L	X	X	Fast motor stop
	1,2E	(TOF	VIEW)
IEAT SIN GR			• VIEW)

PIN		-	
NAME	NO.	TYPE	DESCRIPTION
1,2EN	1	1	Enable driver channels 1 and 2 (active high input)
<1:4>A	2, 7, 10, 15	1	Driver inputs, non-inverting
<1:4>Y	3, 6, 11, 14	0	Driver outputs
GROUND	4, 5, 12, 13	-	Device ground and heat sink pin. Connect to circuit board ground plane with multiple solid vias
V _{CC2}	8	-	Power VCC for drivers 4.5V to 36V
3,4EN	9	1	Enable driver channels 3 and 4 (active high input)
V _{CC1}	16	<u>11</u> 27	5V supply for internal logic translation

L293NE or SN754410 Quadruple Half-H Driver


How it is connected to the Arduino & Motor


Pin 1 (1,2EN) enables and disables our motor whether it is give HIGH or LOW Pin 2 (1A) is a logic pin for our motor (input is either HIGH or LOW) Pin 3 (1Y) is for one of the motor terminals Pin 4-5 are for ground Pin 6 (2Y) is for the other motor terminal Pin 7 (2A) is a logic pin for our motor (input is either HIGH or LOW) Pin 8 (VCC2) is the power supply for our motor. This should be given the rated voltage of your motor Pin 9-11 are unconnected as you are only using one motor in this lab Pin 12-13 are for ground Pin 14-15 are unconnected	NE PACKAGE (TOP VIEW) 1,2EN 1 1,2EN 1 1,2EN 1 1 16 V _{CC1} 2 15 4A 3 14 4Y HEAT SINK AND 4 GROUND 4 2Y 6 11 3X V _{CC2} 6 11 3Y 7 10 3A V _{CC2}	
Pin 14-15 are unconnected Pin 16 (VCC1) is connected to 5V		

http://itp.nyu.edu/physcomp/labs/motors-and-transistors/dc-motor-control-using-an-h-bridge/

Let's build the project and load the code.

L293NE or SN754410 Quadruple Half-H Driver


```
// Program the microcontroller to run the motor through the H-bridge.
    // First set up constants for the switch pin, the two H-bridge pins,
 2
    // and the enable pin of the H-bridge. Use one of the analogWrite pins (3,5,6,9,10, or 11) for the enable pin.
 3
    const int switchPin = 2;
                                // switch input
 4
 5
    const int motor1Pin = 3;
                                // H-bridge leg 1 (pin 2, 1A)
    const int motor2Pin = 4:
 6
                                // H-bridge leg 2 (pin 7, 2A)
 7
    const int enablePin = 9;
                                // H-bridge enable pin
 8
    const int GreenledPin =12; // Turn on Green LED
 9
    const int RedledPin =11;
                                // Turn on Red LED
   // In the setup(), set all the pins for the H-bridge as outputs, and the pin for the switch as an input.
10
11
    // The set the enable pin high so the H-bridge can turn the motor on.
12 void setup() {
13
    // set the switch as an input:
14
        pinMode (switchPin, INPUT);
15
    // set all the other pins you're using as outputs:
16
        pinMode (motor1Pin, OUTPUT);
17
       pinMode (motor2Pin, OUTPUT);
18
       pinMode (enablePin, OUTPUT);
19
        pinMode (GreenledPin, OUTPUT);
20
        pinMode (RedledPin, OUTPUT);
21
    // set enablePin high so that motor can turn on:
22
        digitalWrite (enablePin, HIGH);
23
24
         In the main loop() read the switch.
    11
25
         If it's high, turn the motor one way by taking one H-bridge pin high and the other low.
    11
26
    11
         If the switch is low, reverse the direction by reversing the states of the two H-bridge pins.
27 E void loop() {
28
        // if the switch is high, motor will turn in the Right direction:
29E
        if (digitalRead(switchPin) == HIGH) {
30
          digitalWrite (motor1Pin, LOW);
                                          // set leg 1 of the H-bridge low
31
          digitalWrite (motor2Pin, HIGH); // set leg 2 of the H-bridge high
32
          digitalWrite (GreenledPin, HIGH); //Green ON Turn Motor Right
33
          digitalWrite (RedledPin, LOW); // Red OFF
34
35
        // if the switch is low, motor will turn in the Left direction:
36日
        else {
37
          digitalWrite (motor1Pin, HIGH); // set leg 1 of the H-bridge high
38
          digitalWrite (motor2Pin, LOW); // set leg 2 of the H-bridge low
39
          digitalWrite (GreenledPin, LOW); //Green OFF Turn Motor Left
40
          digitalWrite (RedledPin, HIGH); // Red ON
41
        1
42
```

Build the Project 2 SeeedStudio Motor Shield

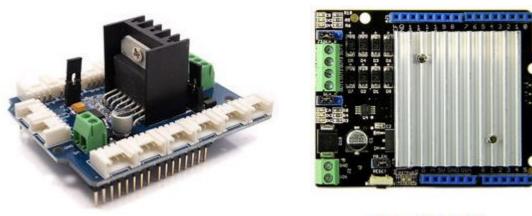
Get parts list from the web page <u>www.the-cains-group.net</u>

Select: July 2016 Workshop Servo & DC Motors

Place Motor Shield on Arduino Board

Connect 2 Motors from the Motor Pack for Arduino

Download: Project_2_Motor_shield_demo_code.ino


Upload to Arduino Board

Project 2 - SeeedStudio Motor Shield

Two type of Motor Shields

Motor Shield V1.0

Motor Shield V2.0

Motor Shield V1.0

Motor Shield V2.0

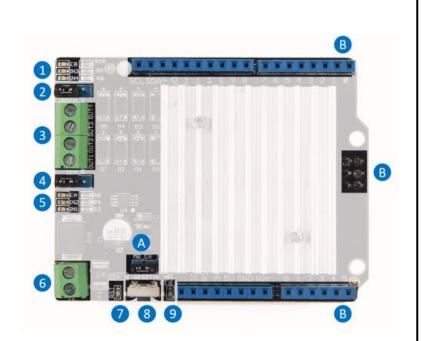
URL: http://www.seeedstudio.com/wiki/Motor_Shield

Motor Shield V1.0 & V2.0

Motor Shield is used with the Arduino to drive two brushed DC motors or one 4-wire two-phase stepper motor.

Based on the H-bridge driver Chip L298N motor driver integrated circuit.

Requires a 6V to 15V power supply to power the motor and also includes an on-board


5V voltage regulator for powering the main Arduino board.

Additional plug and play Grove sensors can be connected to the 13 on-board Grove

Hardware Overview V2

1. Channel 1 indicator, include 3 leds

- *EB* channel 1 enable, high active
- *IN3* status of OUT3
- *IN4* status of OUT4
- 2. Channel 1 Sense Please connect the left 2 pins together for normal usage.
 - **Note** that it's a high level application for sense the current, please refer to datasheet and schematic for more information.
- 3. OUTPUT There're 2 channels, each channel has 2 output
 - Channel 0 OUT1, OUT2
 - Channel 1 OUT3, OUT4
- 4. Channel 0 Sense
- 5. Channel 0 indicator, include 3 leds
 - \blacksquare *EB* channel 0 enable, high active
 - IN1 status of OUT1
 - IN2 status of OUT2
- 6. External Power Input, range 6-15V
- 7. Reset indicator turn red when Reset button is pressed
- 8. Reset button pressed to reset the shield and Arduino
- 9. Power indicator turn green when power in, either internal or external
- A. Power switch
 - Connect Get power from Arduino
 - Disconnect Get power from External sources
- B. Standard Arduino shield pin out

20 int pinI1=8;//define I1 interface	56 void left()//
21 int pinI2=11;//define I2 interface	57 {
22 int speedpinA=9;//enable motor A	58 analogWrite(speedpinA, spead);//input a simulation value to set the speed
23 int pinI3=12;//define I3 interface	59 analogWrite (speedpinB, spead); 60 digitalWrite (pinI4, HIGH);//turn DC Motor B move clockwise
24 int pinI4=13;//define I4 interface	60 digitalWrite (pinI4, HIGH);//turn DC Motor B move clockwise 61 digitalWrite (pinI3, LOW);
25 int speedpinB=10;//enable motor B	62 digitalWrite (pinI2, HIGH);//turn DC Motor A move clockwise
26 int spead =127;//define the spead of motor	63 digitalWrite (pinI1, LOW);
27	64 }
28 void setup()	65 void right()//
29 {	66 {
30 pinMode (pinI1, OUTPUT);	67 analogWrite(speedpinA, spead);//input a simulation value to set the speed
31 pinMode (pinI2, OUTPUT);	68 analogWrite (speedpinB, spead); 69 digitalWrite (pinI4, LOW);//turn DC Motor B move anticlockwise
32 pinMode (greedpinA, OUTPUT);	69 digitalWrite (pinI4, LOW);//turn DC Motor B move anticlockwise 70 digitalWrite (pinI3, HIGH);
	71 digitalWrite (pinI2, LOW) ;//turn DC Motor A move clockwise
	<pre>72 digitalWrite(pinI1, HIGH);</pre>
34 pinMode (pinI4, OUTPUT);	73 }
<pre>35 pinMode (speedpinB, OUTPUT);</pre>	74 void stop()//
36 }	75 {
37	76 digitalWrite(speedpinA,LOW);// Unenble the pin, to stop the motor. 77 digitalWrite(speedpinB,LOW);// this should be done to avoid damaging the motor.
38 void forward()	<pre>77 digitalWrite(speedpinB,LOW);// this should be done to avoid damaging the motor. 78 delay(1000);</pre>
39 {	79
40 analogWrite(speedpinA, spead);//input a simulation value to set the speed	80 }
<pre>41 analogWrite(speedpinB, spead);</pre>	81
42 digitalWrite(pinI4, HIGH);//turn DC Motor B move clockwise	82 void loop()
<pre>43 digitalWrite(pinI3,LOW);</pre>	83 {
44 digitalWrite(pinI2,LOW);//turn DC Motor A move anticlockwise	84 left();
<pre>45 digitalWrite(pinI1, HIGH);</pre>	85 delay(2000); 86 stop();
46 }	87 right();
<pre>47 void backward()//</pre>	88 delay(2000);
48 {	89 stop();
49 analogWrite(speedpinA, spead);//input a simulation value to set the speed	90 // delay(2000);
50 analogWrite(speedpinB, spead);	91 forward();
51 digitalWrite (pinI4, LOW);//turn DC Motor B move anticlockwise	92 delay(2000);
52 digitalWrite (pinI3, HIGH);	93 stop(); 94 backward();
53 digitalWrite (pinI2, HIGH);//turn DC Motor A move clockwise	94 backward(); 95 delay(2000);
54 digitalWrite (pinI1, LOW);	96 stop();
55 }	97 }

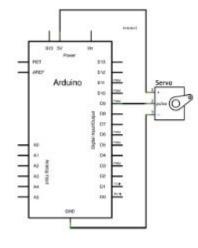
Build the Project 3 Servo Motor - Arduino

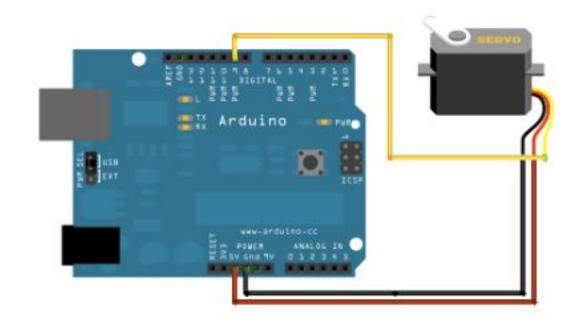
Get parts list from the web page <u>www.the-cains-group.net</u>

Select: July 2016 Workshop Servo & DC Motors

Connect Servo Motor to Arduino Board using Schematic.

Download: Project_3_Servo.ino

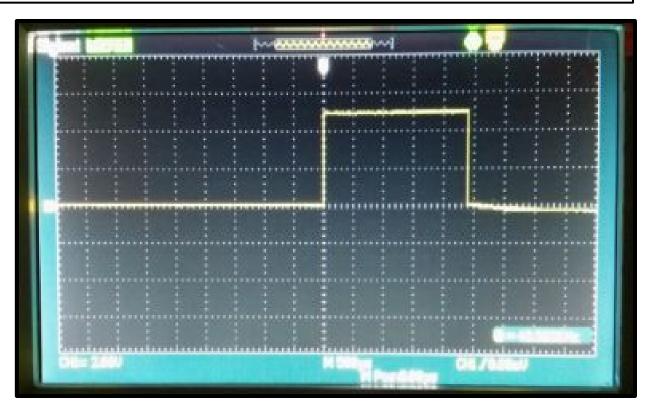

Upload to Arduino Board


*Optional: Connect Oscilloscope to pin 9 and watch waveform.

Project 3 Servo Motors with Arduino

Sweeps the shaft of a RC servo motor back and forth across 180 degrees.

Code Location: http://www.arduino.cc/en/Tutorial/Sweep


```
#include <Servo.h>
9
10
   Servo myservo; // create servo object to control a servo
11
                // twelve servo objects can be created on most boards
12
   int pos = 0; // variable to store the servo position
13
14 void setup() {
    myservo.attach(9); // attaches the servo on pin 9 to the servo object
15
16 }
17
18 = void loop() {
19E
     for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
20
     // in steps of 1 degree
21
     myservo.write (pos);
                                     // tell servo to go to position in variable 'pos'
22
                                      // waits 15ms for the servo to reach the position
     delay(15);
23
24E
     for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
25
       myservo.write(pos); // tell servo to go to position in variable 'pos'
26
                                     // waits 15ms for the servo to reach the position
     delay(15);
27
     }
28 E
    /* Example:
29
       for (pos = 2200; pos >= 800; pos -= 20) { // goes from 180 degrees to 0 degrees
     myservo.write(pos); // tell servo to go to position in variable 'pos'
30
31
      delay(25);
                                      // waits 15ms for the servo to reach the position
32
    1*/
33
```

```
for (pos = 0; pos <= 180; pos += 1) {
    myservo.write(pos);
    delay(15);</pre>
```

// goes from 0 degrees to 180 degrees
// in steps of 1 degree
// tell servo to go to position in variable 'pos'
// waits 15ms for the servo to reach the position

PWM is used to drive motor pos = numbers of steps delay = servo to reach position

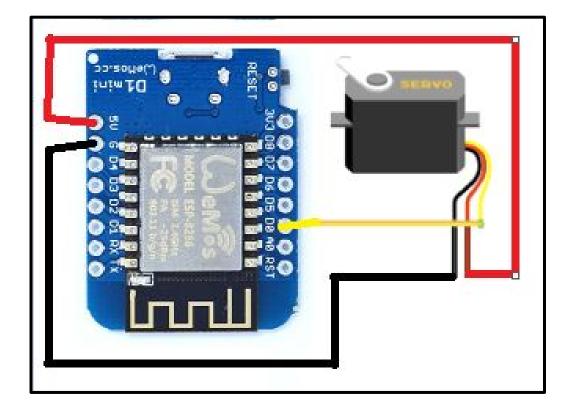
Question: If pos = 2? If pos =25? Id delay=20? If delay =120?

Build the Project 4 Servo Motor - Wemos

Get parts list from the web page <u>www.the-cains-group.net</u>

Select: July 2016 Workshop Servo & DC Motors

Connect Servo Motor to Arduino Board using Schematic.


Download: Project_4_WeMos_Servo_Web.ino

Upload to Wemos Board

*Optional: Connect Oscilloscope to pin 9 and watch waveform.

Project 4 - Servo Motors with Wemos D1 Mini

Presented by - Jim Merkle

